O.P.Code: 16HS602 H.T.No. R16

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS) B.Tech I Year I Semester Supplementary Examinations June-2024

B.Tech I Year I Semester Supplementary Examinations June-2024					
ENGINEERING MATHEMATICS-I (Common to All)					
T	Time: 3 Hours		Max.	Mar	ks: 60
		(Answer all Five Units $5 \times 12 = 60$ Marks)			
		UNIT-I			
1		Solve $\left(1 + e^{\frac{x}{y}}\right) dx + e^{\frac{x}{y}} \left(1 - \frac{x}{y}\right) dy = 0.$	CO1	L1	6M
	J	Solve $x \frac{dy}{dx} + y = log x$.	CO1	L2	6 M
_		OR			
2		Solve $(D^2 - 4D)y = e^x + \sin 3x \cos 2x.$	CO ₁	L2	6M
	ŀ	A radioactive substance disintegrates at a rate proportional to its mass.	CO ₁	L3	6M
		When the mass is 10 mg, the rate of disintegration is 0.051 mg per day.			
		How long will it take for the mass of 10 mg to reduce to its half?			
_		UNIT-II			
3	a	Expand $\log_e x$ in powers of (x-1) and hence evaluate $\log(1.1)$ correct to	CO ₂	L2	6M
		4 decimal places.			
	b	Calculate the approximate value of $\sqrt{10}$ correct to 4 decimal places	CO ₂	L3	6M
		using Taylor' series.			
		OR			
4	a	Find a shortest and longest distance from the point (1,2,-1) to the sphere	CO ₂	L1	6M
		$x^2 + y^2 + z^2 = 24.$			
	b	Find the volume of the largest rectangular parallelopiped that can be	CO ₂	L2	6M
		inscribed in the ellipsoid $4x^2 + 4y^2 + 9z^2 = 36$.			
		UNIT-III			
5	a	Evaluate $\int_{-\infty}^{\infty} e^{-(x^2+y^2)} dx dy$.	CO3	L1	6M
		0 0			01.2
	b	Evaluate $\int_{1}^{e} \int_{1}^{\log y} \int_{1}^{e^{x}} \log z dz dx dy$.	CO3	L2	6M
		Evaluate $\int_{1}^{1} \int_{1}^{1} \log z dz dx dy$.			
OR					
6	a	Evaluate the integral by changing the order of integration $\int_{0}^{4a\sqrt[3]{ax}} dy dx$.	CO3	L2	6M
		Evaluate the integral by changing the order of integration $\int \int dy dx$.			
	,	$0 \frac{x^2}{4a}$			
	b	Evaluate $\iint r \sin \theta \ dr \ d\theta$ over the cardioids $r = a(1 + \cos \theta)$ above the	CO ₃	L3	6M
		initial line.			
		UNIT-IV			
7	a	Find Laplace transform of $f(t) = e^{-3t} \sinh 3t$ using change of scale	CO4	L1	6M
		property.			
	b	To prove $L(f^n(t)) = s^n \overline{f}(s) - s^{n-1} f(0) - s^{n-2} f^1(0) - \dots - f^{n-1}(0)$.	CO4	L2	6 M
		(0).			*

OR